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Abstract. We present a technique for texture mapping arbitrary sphere-like sur-
faces with minimal distortions by spherical embedding. The embedding is com-
puted using spherical multi-dimensional scaling (MDS). MDS is a family of meth-
ods that map a set of points into a finite dimensional domain by minimizing the
difference in distances between every pair of points in the original and the new em-
bedding domains. In this paper spherical embedding is derived using geodesic dis-
tances on triangulated domains, computed by the fast marching method. The MDS
is formulated as a non-linear optimization problem and a fast multi-resolution so-
lution is derived. Finally, we show that the embedding of complex objects which
are not sphere-like, can be improved by defining a texture dependent scale factor.
This scale is the maximal distance to be preserved by the embedding and can be
estimated using spherical harmonics. Experimental results show the benefits of
the proposed approach.

1 Introduction

Texture mapping is a fundamental technique in computer graphics where an image is
mapped onto a given surface. This problem is closely related to the embedding of high
dimensional data in a low dimensional space, such that a certain distortion measure is
minimized. As texture maps are usually defined on a plane or a sphere, the problem can
be viewed as the embedding of curved surface onto a two dimensional flat or spherical
space. Two coordinates are assigned to each of the original mesh vertices, a procedure
also known as parametrization. The texture pixels are then mapped from the texture
image (parametrization surface) to the faces of the triangle in 3D, and the embedding
errors are perceived as visual artifacts.

This topic was extensively studied in the computer graphics literature.Arad and Elber
[1] preserve the local area of textures by finding, for a specific viewing direction, the four
intersecting curves (in the parametric space) between a swept rectangle in the viewing
direction and the surface. Then, they warp the square texture image to fit the four curves.
This method is useful when the texture is mapped on a small region of the surface.

In [2], Azariadis and Aspragathos proposed to minimize a functional that combines
a dissimilarity measure for neighboring vertices and an area measure for the flattened
triangles. They also restricted two curves in their mapping to have identical lengths
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as two selected curves on the surface. This constraint can be considered a boundary
condition for their scheme.

Neyret and Cani [3] dealt with general surface topology by tiling together small
textured patches with matching boundaries. Their method is limited to textures with
relatively small details, as the tiles should be relatively small. A similar solution was
introduced in [4], where features are detected in a small texture patch, and are repeatedly
pasted onto any given surface until it is completely covered. These methods are impose
some non-trivial difficulties for mapping an image onto a curved domain.

The problem of computing global conformal structures for general closed meshes was
addressed in [5], where the proposed method approximates De Rham cohomology by
simplicial cohomology, and compute a basis of holomorphic one-forms. It is generalized
for surfaces with boundaries and there is no restriction of the geometric realization for
homology basis. A conformal mapping which preserves the angles of the mesh triangles
was proposed by Haker et al. [6] to embed a closed surface onto a sphere.

Sheffer and de Sturler [7] concentrate on preserving the angles of the mesh while
mapping it onto the 2D plane. The mapping is defined in terms of the angles only, and an
optimal solution is proven to exist. However, these methods still impose high distortion
on highly curved surfaces and may even lead to self-intersections.

To cope with the distortion problem, the input mesh can be partitioned into several
parts and each part will be mapped to a sphere. Thus, a set of embeddings is derived
and a seam construction algorithm is needed to provide a continuous mapping within
the set of embeddings. Such approaches were first applied to planar embeddings. In [8]
the mesh is partitioned by computing a coarse base mesh, where each triangle in the
base mesh defines a parametrization for a corresponding cluster of triangles in the input
mesh. The embedding is then computed by harmonic maps. Similarly, in [9], the mesh
was clustered according to the similarity in the directions of normals and of maximal
curvatures. Each region is then embedded on a plane.

For spherical embeddings, Sheffer [10] introduced seams into the surface, computed
by a minimal-spanning-tree algorithm. Since cutting the surface at the regions of high
curvature reduces the Gaussian curvature, the seams improve the overall quality of the
mapping. The self-intersections are detected in a post-process, and the parametrization
needs to be recomputed to eliminate them.

The pioneering papers [11] and [12], are closely related to the algorithm presented
here. First, geodesic distances between pairs of points on the surface are computed,
using a computationally intensive scheme. Then, the MDS (Multi-Dimensional Scaling)
is applied to flatten the surface using the geodesic distances.

Related approaches to planar embedding were more recently applied to volumetric
and triangulated data in [13] and [14], respectively. They start by computing the geodesic
distances on volumetric ([13]) or triangulated data ([14]), and then apply classical scaling
to D, the matrix of distances between each pair of vertices on the mesh. The planar em-
bedding is given by the first two eigenvectors and eigenvalues of the double centered D.

Such an embedding is also applicable to unfolding of the curved and convoluted outer
surface of the brain (known as the cortex or cortical surface) [15]. The 3D structure of
the cortex (a mesh) is mapped onto a sphere or a plane, and the embedded representation
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can then be used to compare inter-patient neuroimaging data and visualize it using
texture mapping.

In this paper, we present a spherical texture mapping scheme based on Multi-
Dimensional Scaling (MDS) [16, 17, 18], which minimizes the difference in geodesic
distances between corresponding vertices on the mesh and their embedding on the sphere.
Formally, denote by DG (i, j) the geodesic distance between two vertices in the in-
put mesh and DE

G (i, j) the geodesic distance between their corresponding dual points
on a sphere.

The MDS aims to compute an embedding E that minimizes the embedding error

ε =
n∑
i,j

wij(DG (i, j) − DE
G (i, j))2 (1.1)

where wij ≥ 0 and n is the number of vertices in the mesh.
The geodesic distances on the curved surface are efficiently computed using the fast

marching method on triangulated domains [19]. Spherical mapping is more computa-
tionally demanding than planar mapping. Yet, for sphere-like surfaces such as faces and
the brain cortex, it yields lower embedding errors.

The unweighted MDS (wij = 1) preserves both the ‘local’ (small DG (i, j) values)
as well as the ‘global’ (large DG (i, j) values) structure of the texture and does not
require boundary conditions, while most of the previous schemes require them as they
integrate local measures to preserve the global structure.

A preliminary version of the above scheme was used in [20] to texture map the
Cortex. Next we extend these results by providing a faster scheme that better handles
the embedding of meshes which are not sphere-like.

The embedding error of such meshes is large, yielding poor visual quality. We show
that by adaptively setting the weights wij , the texture mapping quality is improved and
that such a technique is related to local regression [21]. The weighted MDS allows us to
specify a certain range of distances for which the texture structure should be preserved.
This range can be determined for a given texture image using spherical harmonics.

Finally, we present an efficient multi-resolution numerical scheme for the solution
of Eq. (1.1) in both weighted and the unweighted cases and show its applicability.

We note that our scheme is conceptually related to the schwartz et al. dimensionality
reduction algorithm [12] (that was recently popularized under the name of ISOMAP
[22]). In our case the restriction of the distance on a sphere (rather than a plane) leads
to better preservation of the original geodesic distances.

The outline of this paper is as follows: preliminaries are given in Sections 2 and
3 which provide a brief review of fast marching on triangulated domains and distance
computations on spheres, respectively. Section 4 presents the proposed spherical MDS
algorithm which is experimentally verified in Section 5. Concluding remarks are given
in Section 6.

2 Fast Marching Method on Triangulated Domains

The first step of the embedding procedure is to compute the geodesic distances between
pairs of points on the surface. The fast marching method (FMM), introduced by Sethian
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[23] is a numerically consistent distance computation approach that is applicable to rect-
angular grids and was extended to triangulated domains by Kimmel and Sethian in [19].

The basic idea is to numerically solve a wave propagation problem given by an
Eikonal equation , where at the source point the distance is known to be zero. The
distance function is iteratively constructed by patching together small planes supported
by neighboring grid points with gradient magnitude equal to one.

The distance function is constructed by starting from the sources point and propagat-
ing outwards. Applying the method to triangulated domains requires a careful analysis
of the update of a single vertex in a triangle, when the distance function at the other
vertices is given. The FMM on triangulated domains computes the geodesic distances
between a single vertex and the rest of the n surface vertices in O (n) operations. Repeat-
ing this computation for each vertex, we compute all the geodesic distances DG (i, j)
{1 ≤ i ≤ n, j < i} in O

(
n2

)
operations.

Thus, the essence of the FMM, is its low computational complexity as the distance
from the source point gets larger. Note that, if the numerical grid given by triangles
is pre-processed properly, that is, obtuse angles are subdivided by virtual edges [19],
then the geodesic distance computation is accurate (first order) and the whole scheme
is consistent.

3 Spherical Geometry

Spherical MDS schemes map vertices onto a surface of a unit sphere. Points on a surface

of the sphere are parameterized by a vector of spherical angles θ =
[
θ1 θ2

]T
, where

each point l is given by the coordinates
{
θl
1, θ

l
2
}

.
Let θl

1
(−π

2 ≤ θl
1 ≤ π

2

)
and θl

2
(
0 ≤ θl

1 ≤ 2π
)

be the spherical angles, such that

xl = cos θl
1 sin θl

2
yl = sin θl

1 sin θl
2

zl = cos θl
2.

(3.1)

Then, the Euclidean distance de
ij between points on the sphere is given by

(
de

ij

)2 = (xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2
. (3.2)
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Fig. 1. Spherical geometry. The geodesic distance on the surface of the sphere is given by the
length of the arc corresponding to the angle ϕ
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Substituting Eq. (3.1) we have that

(
de

ij

)2 = 2 − 2 sin θi
2 sin θj

2 cos
(
θi
1 − θj

1

)
− 2 cos θi

2 cos θj
2 (3.3)

and by applying the Low of Cosines to the triangle depicted in Fig. 1 we get(
de

ij

)2 = 2R2 − 2R cos ϕ, (3.4)

where ϕ is the planar angle and for the unit sphere R = 1.
dg

ij (i, j), the geodesic distance on the sphere is then given by

dg
ij (i, j) = ϕ = arccos

2 − (
de

ij

)2

2
. (3.5)

4 Spherical MDS Formulation

This Section applies the least squares MDS formulation to the spherical embedding
problem. First we compute the geodesic distances between the vertices of the input mesh
using the FMM described in Section 2. The spherical MDS is formulated in Section 4.1
and an iterative optimization scheme is presented. Further improvement is achieved
by embedding the above procedure in a multi-resolution scheme given in Section 4.2.
Finally, we introduce the weighted MDS in Section 4.3, which allows us to better handle
the embedding of non-sphere-like objects.

4.1 The Spherical MDS Formulation

For the spherical MDS, DE
G (i, j) , the distance between the embedded vertices is the

geodesic distance on the sphere given by Eq. (3.5). The spherical MDS is derived by
substituting dg

ij

(
θi, θj

)
, into Eq. (1.1) and solving for the spherical embedding param-

eters θ

θ = arg min
θ

∑
i,j

wij(d
g
ij

(
θi, θj

) − DG (i, j))2. (4.1)

The minimization is computed using steepest-decent [24]. Note that DG (i, j), the
geodesic distance on the mesh, remains fixed. Let ε be the embedding error

ε =
∑
i,j

wij(d
g
ij

(
θi, θj

) − DG (i, j))2 =
∑
i,j

wijε
2
ij , (4.2)

the steepest-decent iteration is given by

θk+1 = θk − λ
∂ε

∂θ
, k = 0.. (4.3)

where ∂ε
∂θ =

[
∂ε
∂θ1

∂ε
∂θ2

]T
, λ is the step size discussed in Section 4.1 and θ0 is given as

input. εk denotes the embedding error after iteration k.
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The partial derivatives are computed using the chain rule

∂ε

∂θl
m

=
n∑

j=1

wij2(dg
lj

(
θi, θj

) − DG (l, j))
∂dg

ij

(
θi, θj

)
∂θi

(4.4)

=
n∑

j=1

wij2εil

∂dg
ij

(
θi, θj

)
∂θi

m

, m = 1, 2, l = 1..n.

By applying the chain rule again and substituting Eqs. (3.3) and (3.5) we get

∂dg
ij

(
θi, θj

)
∂θi

m

=
∂dg

ij

(
θi, θj

)
∂de

il

∂de
il

∂θi
m

where
∂dg

ij

(
θi, θj

)
∂de

il

=
∂dg

ij

(
θi, θj

)
∂ (de

il)
2 2de

il =
−2de

il√
1 −

(
2−(de

ij)
2

2

)2

and

∂de
il

∂θl
1

= − 1
de

ij

sin θi
2 sin θj

2 sin
(
θi
1 − θl

1
)

(4.5)

∂de
il

∂θl
2

=
1

de
ij

(
− cos θi

2 sin θj
2 cos

(
θi
1 − θl

1
)

+ sin θi
2 cos θl

2

)
Equation (4.3) is reiterated until at mostNmax iterations are performed or the decrease

of the embedding error |εk − εk−1| is less than a predetermined threshold.

Line Search. An appropriate choice of the iterative step-sizeλ used in Eq. (4.3) is critical
for the convergence properties of the steepest-decent scheme. Setting a low value for λ
would result in slow convergence, while setting it too high, may cause the algorithm to
diverge. A possible solution is to use a line search [24] to find the optimal value of λ
that minimizes εk given ∂ε

∂θ .
Thus, at each iteration k,

1. Start by setting λ = 1.
2. Compute the updated solution θk using Eq. (4.3) and the embedding error εk.
3. If εk < εk−1, set λ = 2λ, εk−1 = εk and go to Step 2.
4. If εk > εk−1, set λ = λ

2 , εk−1 = εk.
5. If the current value of λ was already used then quit, else, go to Step 2.

Due to the symmetry of the geodesic distances dg
ij

(
θi, θj

)
= dg

ij

(
θj , θi

)
, the eval-

uation of Eq. (4.2) can be reduced to

ε =
n∑

i=1

j<i∑
j=1

wij(d
g
ij

(
θi, θj

) − DG (i, j))2,

and the computation of the embedding error is faster than the evaluation of the embedding
error’s derivative in Eq. (4.4).
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4.2 Fast Multi-resolution Spherical MDS

Multi-resolution optimization techniques are widely used in computer vision [25] and are
usually computationally more efficient than single resolution schemes, as they improve
the accuracy and numerical conditioning. Denote {0 ≤ s ≤ smax} the scale of the mesh,
where s = 0 corresponds to the finest resolution and smax is predefined. Then Vs, Es

and Ds are the mesh, its embedding and the distance matrix in a scale s, respectively.
Next, we define downscaling and upscaling procedures that relate {Ms, Es, Ds}

to {Ms+1, Es+1, Ds+1}. The downscaling is implemented using the mesh decimation
scheme given in [26]. Thus, the embedding Es+1 is computed by copying the embedding
of each vertex Vi ∈ Ms+1 from Es, and Ds+1 is a decimated replica of Ds where any
row and column i such that Vi /∈ Ms+1 are removed.

The upscaling is given by copying the embedding in Es+1 of the vertices Vi ∈ Ms+1,
to the corresponding entries in Es. The initial embedding of each vertex Vi /∈ Ms+1 is
approximated by using the embedding of the vertex Vi ∈ Ms+1 closest to it. The upscaled
embedding is then used to initialize θ0 in the iterative scheme given in Section 4.1.

The solver is randomly initialized in the coarsest scale. In general, this makes the
scheme robust to local minima. As we did not encounter such cases in our tests, the
solver can also be initialized by projecting the vertices on the unit sphere by computing
their spherical coordinates and setting r = 1.

The computation is performed from coarse to fine. The result is refined in the finest
resolution level, the global minimum is achieved. The downscaling and upscaling of Es

and Ds use only data structure operations and no numerical computations, making them
fast and suitable for the embedding of large meshes.

4.3 Weighted MDS

For the particular application of texture mapping, the spherical embedding can be modi-
fied to improve the visual quality. The embedding error of meshes which are not sphere-
like is large, yielding poor visual quality. Preserving both the local and global structure
for such meshes is sometimes impossible. A possible solution is to partition the mesh
and map each part separately. Such approaches were discussed in Section 1. The main

(a)

Fig. 2. Deriving the intrinsic scale of a texture. In such a texture, it suffices to retain the distances
between the points A and B which is the intrinsic scale σ. The distances AC and AB are visually
less significant



450 A. Elad, Y. Keller, and R. Kimmel

problem there, is the seamless integration of the partial embeddings into a single contin-
uous mapping. Hence, we are motivated to extend the current scheme to better handle
complex meshes. It can also be used as a component of a partitioning based scheme.

For textures such as the soccer ball shown in Fig. 2, we denote σ, the intrinsic scale
of the texture image. σ is the largest distance that should be preserved by the embedding,
while larger distances can be distorted. For example, for the soccer ball, σ is the width
of the pentagon.

This approach is related to local regression [21], where functions are estimated locally
by polynomials and the local scale is given by the scale parameter σ. Following the local
regression formulations in [21] the weights were computed using the Nadaraya-Watson
kernel

Kσ (x) = D

( |x|
σ

)
with

D (t) =
{ 3

4

(
1 − t2

)
if |t| ≤ 1

0 otherwise.

Equation (4.2) is reduced to

ε =
∑
i,j

wijε
2
ij =

∑
|DG(i,j)|<σ

Kσ (DG (i, j)) ε2
ij . (4.6)

Note that by using the weighted MDS (WMDS), the scheme preserves only the distances∣∣DG

(
θi, θj

)∣∣ < σ. Thus, there is no need to store all of the relative distances and
compared to the unweighted MDS and [14] the matrix of distances becomes sparse.
This makes the weighted MDS more suitable for embedding large meshes.

Intrinsic Scale Estimation. For a given spherical texture map the intrinsic scale can
be estimated using spherical harmonics. This is a set of basis function defined on the
surface of the sphere analogous to Fourier analysis. Spherical harmonics have been
used in graphics to efficiently represent the bidirectional reflection distribution function

(a)
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Fig. 3. Computing the intrinsic scale of a texture using spherical harmonics. The spherical texture
map used in Fig. 2 is given in (a) in spherical coordinates. The spherical harmonics coefficients
are shown in (b). The maxima is detected in (m = 2, n = 4), corresponding to 2 cycles in the
latitude (vertical axis of (a) ) and 4 cycles in the longtitude (horizontal axis of (a) )
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(BRDF) of different materials. Thus by computing the spherical harmonics coefficients,
one can estimate the dominant spherical frequencies corresponding to the intrinsic scale
σ. Such an example is given in Fig. 3 where the spherical harmonics coefficients of Fig.
3a are given in Fig. 3b.

We note that the Weighted MDS can also be applied to planar least squares MDS,
where the intrinsic scale σ can be estimated by the Fourier transform of a given texture
map and detecting the dominant frequencies.

5 Experimental Results

The proposed technique was tested using several meshes. We start by comparing the
proposed scheme to the MDS based planar embedding given in [14]. The ‘face’ mesh
(6000 vertices) has a half-sphere-like topology and the ‘David’ mesh (10000 vertices) is
used to compare the embeddings of a full-sphere-like object. We show the applicability
of the scheme to medical visualization by annotating and texture mapping the ‘cortex’
mesh (6000 vertices) and a segment of it. Finally, we apply the WMDS to texture
mapping the ‘Stanford bunny’ (6000 vertices) and show the improvement compared
to the regular MDS.

Given θi (the spherical embedding of a vertex Vi), the color associated to Vi was
determined by sampling the spherical texture image I at θi. Subpixel values of θi were
handled by bilinear interpolation of I . The visualizations of the texture mapped meshes
were produced by the VTK mesh viewer [27]. The multi-resolution MDS scheme was
used in all of the simulations, with three resolution scales. At each scale the computation
continued until ∆ε, the reduction of the embedding error, became less than 10−7.

Figure 4 and Table 1 show the visualizations artifacts and the embedding error of the
‘face’ mesh, respectively. This is a half-sphere-like object with low curvature, except for
the nose area which is a high curvature structure. The embedding was computed using
the regular (unweighted) MDS. Figures 4a and 4b, show similar visual quality, except for
the nose area, where the planar MDS shows a larger distortion. Thus, both embedding
have a similar average error.

(a) Spherical
MDS

(b) Carte-
sian MDS

Fig. 4. The Spherical and Planar MDS applied to the ‘face’ mesh (6000 vertices). Note the em-
bedding error of the cartesian MDS around the region of the nose
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Table 1. Embedding error comparison between cartesian and spherical embeddings

Name Vertices# Embedding type Embedding error

Face 3000 spherical 3.1 · 10−5

Face 3000 cartesian 3.4 · 10−5

Face 6000 spherical 1.15 · 10−5

Face 6000 cartesian 1.25 · 10−5

(a) (b) (c)

(d) (e) (f)

Fig. 5. Texture mapping of a sphere-like mesh. (a) The head of the David mesh (1000 vertices) .
(b) The planar chess texture used for the planar texture mapping in (c). (c) The results of a LSMDS
based planar texture mapping. (d), (e) and (f) Texture mapping results using the spherical MDS

A significant improvement is evident in the embedding of the full-sphere-like ‘David’
mesh given in Fig. 5. The planar embedding results in significant embedding error, while
the spherical MDS gives reasonable results.

(a) (b) (c) (d)

Fig. 6. Annotation of parts of the Cortex
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Fig. 7. Coloring part of the cortex. Note the accuracy with which the pentagon patterns are pre-
served

(a) (b) (c) (d)

Fig. 8. Local spherical MDS texture mapping results. (a) and (b) are the results of the regular
spherical MDS while (c) and (d) are both sides of the Stanford bunny textured mapped using the
local spherical MDS. Note the improved mapping in (b)

Figures 6 and 7 apply the spherical MDS to the unfolding of the brain cortex for
medical visualization. We were able to annotate the cortex in Fig. 6 and color it in Fig. 7.
Note the lack of geometrical distortions in these figures.

Finally, we compare the results of the spherical and weighted spherical MDS using the
‘Stanford bunny’. This object is far from a sphere and has points of negative and positive
mean curvature. Texture mapping it using the spherical MDS, results in significant
embedding errors, as depicted in Figs. 8a and 8b. There is no embedding that minimizes
the difference in both the local and global distances. The results of the WMDS applied
with σ = 0.1 are demonstrated in Figs. 8c and 8d, that depict the improved texture
mapping. Fig. 8e depicts the texture mapping of the earth’s texture.

These results asses the validity of the mapping (bijectivity). For patches with high
isoperimetric distortion (sphere-like shapes), classical geodesic-MDS often gives wrong
results. This is not evident in our results. Note that the measure we optimize is a global

Table 2. Timing results for the single scale and multiscale MDS. The multi-scale scheme signifi-
cantly reduces the computation time

Mesh size [vertices#] 1000 2000 3000 6000 10000
Single scale 4.4s 11.4s 32.7s 166.8s 420.0s
Multiscale 2.0s 5.2s 25.2s 67.1s 217.5s
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one. The triangulation is a particular numerical representation of the geometry. While
mapping a sphere-like surface onto a plane one could experience face flips. However,
choosing the sphere as a target simplified map, such effects are reduced drastically. Using
least squares scaling one could restrict the triangles to preserve their orientation on the
sphere. However, we did not find such a restriction a necessity in our applications.

The timing results for the single and multiscale MDS are given table 2. The algorithms
were implemented using non-optimized C++ and the multi-scale MDS implementation
uses the same code as the single scale scheme for the computations within each resolution
scale. The ‘Stanford bunny’ (6000 vertices) was used for the timing measurements on
a 2.8GHz PC. Evidently, the multi-scale scheme improved the algorithm’s timing by
50-100 percent.

6 Summary

An efficient and accurate method for embedding surfaces onto a sphere was presented.
The method is based on the fast marching on triangulated domains algorithm followed by
multi-dimensional scaling, and was shown to provide improved visual results compared
to planar flattening. Furthermore, we presented a weighted MDS formulation which
allows us to better handle objects with non-sphere-like geometry. Finally, we derived
a fast multi-scale optimization scheme for the numerical solution of the problem. In
future work we will study the use of the proposed scheme in a partitioning based em-
bedding scheme. The main challenge is to device a partitioning scheme that will allow
a continuous mapping between the embedded partitions.
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